Weak solutions of backward stochastic differential equations with continuous generator
نویسندگان
چکیده
منابع مشابه
Anticipated Backward Stochastic Differential Equations with Continuous Coefficients
In this paper we prove the existence of solutions to 1-dimensional anticipated backward stochastic differential equations with continuous coefficients. We also establish the existence of a minimal solution. Finally we derive a related comparison theorem for these minimal solutions.
متن کاملInfinite time interval backward stochastic differential equations with continuous coefficients
In this paper, we study the existence theorem for [Formula: see text] [Formula: see text] solutions to a class of 1-dimensional infinite time interval backward stochastic differential equations (BSDEs) under the conditions that the coefficients are continuous and have linear growths. We also obtain the existence of a minimal solution. Furthermore, we study the existence and uniqueness theorem f...
متن کاملSolutions of Backward Stochastic Differential Equations on Markov Chains
Consider a continuous time, finite state Markov chain X = {Xt, t ∈ [0, T ]}. We identify the states of this process with the unit vectors ei in R N , where N is the number of states of the chain. We consider stochastic processes defined on the filtered probability space (Ω, F , {Ft}, P), where {Ft} is the completed natural filtration generated by the σ-fields Ft = σ({Xu, u ≤ t}, F ∈ FT : P(F ) ...
متن کاملOn measure solutions of backward stochastic differential equations
We consider backward stochastic differential equations (BSDE) with nonlinear generators typically of quadratic growth in the control variable. A measure solution of such a BSDE will be understood as a probability measure under which the generator is seen as vanishing, so that the classical solution can be reconstructed by a combination of the operations of conditioning and using martingale repr...
متن کاملReflected Solutions of Backward Doubly Stochastic Differential Equations ∗
We study reflected solutions of one-dimensional backward doubly stochastic differential equations (BDSDEs in short). The “reflected” keeps the solution above a given stochastic process. We get the uniqueness and existence by penalization. For the existence of backward stochastic integral, our proof is different from [KKPPQ] slightly. We also obtain a comparison theorem for reflected BDSDEs. At ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 2014
ISSN: 0304-4149
DOI: 10.1016/j.spa.2013.09.011